Космический телескоп имени Джеймса Вебба успешно стартовал 25 декабря 2021 года и сейчас движется к месту своей будущей работы на расстоянии 1,5 млн км от Земли. Все астрономы радуются успешному запуску и предвкушают выдающиеся результаты исследований, которые должны значительно расширить, а может быть и изменить наши знания о Вселенной. Почему же именно он так важен для науки, и каких результатов можно ожидать от этого космического телескопа?
James Webb Space Telescope (JWST) обладает несколькими преимуществами, с которыми не сравнятся другие существующие или планируемые в ближайшее время наземные или космические телескопы. Сам JWST стал настоящим долгостроем и не раз оказывался под угрозой закрытия. Проект стартовал в 1996 году, и к моменту запуска обошелся почти в $10 млрд. Такие сроки и стоимость определяются высочайшей сложностью аппарата, и требованиями к точность конструкции, качеству наблюдений и десятилетним сроком активной работы. Отличительной чертой телескопа выступает его главное раскладное зеркало, составленное из 18 шестиугольных сегментов. У телескопа раскладывается не только зеркало, но и тепловой щит, и вместе с оптическими элементами JWST становится настоящим космическим трансформером.
Новый телескоп чаще всего сравнивают с космическим телескопом Hubble, который уже более тридцати лет служит мировой науке. Диаметр главного зеркала Hubble 2,4 м, а у JWST 6,5 метра. На Земле есть телескопы большего размера, например Большой Канарский имеет диаметр 10,4 м, но из-за атмосферы он может сравниться только с Hubble, да и то не во всём.
Размещение телескопа в космосе дает несколько преимуществ. Прежде всего так избавляются от искажающего влияния земной атмосферы. В то же время сейчас освоено несколько методов повышения качества наблюдений земных телескопов. Некоторые 8-метровые земные телескопы по ряду возможностей уже превышают тот же Hubble, но отсутствие атмосферы — не единственное преимущество космоса. Космические телескопы обладают возможностью длительного накопления света во время наблюдений. В фотографическом деле это называется выдержка, т.е. время открытого затвора, за которое проецируется свет на светочувствительный элемент. А возможности цифровой обработки снимков позволяют суммировать несколько кадров одного и того же места. Вместе это позволяет вести длительное накопление фотонов. Например рекордная съемка Hubble eXtreme Deep Field позволила создать снимок с суммарной выдержкой 2 миллиона секунд или 23 дня.
Такой обзор позволил взглянуть в ранние времена Вселенной до 13,2 млрд лет назад, т.е. самая древняя из заснятых галактик имеет возраст около 600 млн лет от Большого взрыва.
Телескоп Hubble располагается на низкой околоземной орбите, и это не самое удобное место для такого аппарата. Земля и Солнце мешают наблюдениям, и часть времени «съедает» нижний радиационный пояс. Зато такая орбита дала возможность проводить обслуживание телескопа, что значительно продлило время его работы.
Телескоп JWST располагается удобнее для наблюдений, но недоступно для шаттлов обслуживания — в точке Лагранжа L2 в системе Земля-Солнце. Это область космоса из которой и Земля и Солнце всегда находятся примерно в одной области неба. Это значит, что наблюдения выбранных целей не придется прерывать каждые 45 минут, как в случае с Hubble. JWST всегда будет сориентирован «спиной» к Солнцу, а значит всё остальное небо будет доступно для наблюдений. Годовое движение вокруг Солнца позволяет наблюдать любую точку Вселенной.
Такие условия делают эту точку популярной для космических телескопов и там уже находятся телескопы Gaia и «Спектр-РГ», до этого работали Herschel и Plank. Но не стоит опасаться, что телескопы будут там биться бортами друг о друга. На самом деле собственно в точке L2 ни один из этих аппаратов находится не будет, т.к. она неустойчивая, а летают они по широкой гало-орбите вокруг неё. При этом в поперечнике гало-орбита может достигать полутора миллионов километров, т.е. вероятность столкновения у таких телескопов намного меньше чем опасность встречи космического мусора на низкой околоземной орбите.
Диаметр JWST примерно в два с половиной раза больше Hubble, а это один из важных параметров, определяющих разрешающую способность телескопа, т.е. возможность различать наименьшие детали на снимках. Впрочем, разрешение телескопа также зависит от длины волны света, на которой ведется наблюдение, и здесь инфракрасный телескоп проигрывает, тому, который наблюдает в более коротковолновом видимом диапазоне. Длина волны света видимого нашими глазами диапазона в среднем составляет 0,5 мкм, а основные приборы JWST регистрируют от 0,6 до 5 мкм, а это значит, что разрешение снимков JWST будет начинаться с двойного превосходства над Hubble (благодаря большему диаметру главного зеркала), и уходить в пять раз меньшее разрешение (из-за большей длины волны света).
Обеспечение теплового режима в космосе — сложная инженерная задача, которая зависит от условий работы космического аппарата. Например, теплоизоляция телескопа Hubble заботится прежде всего о сохранении стабильной температуры телескопа, независимо от его расположения на солнечной или теневой стороне околоземной орбиты. Однако, температура самого Hubble и его светочувствительных детекторов близка к комнатной. В отличие от него, у JWST рабочая температура на 223 градуса ниже нуля Цельсия. Это позволяет наблюдать гораздо большее число объектов космоса, которые излучают или отражают свет в инфракрасном диапазоне.
Пятислойный теплоизолирующий щит JWST погружает оптические системы телескопа в искусственную тень, в результате чего они охлаждаются до сверхнизких температур путем естественного излучения. В дополнение к ним, один из приборов телескопа имеет активную систему охлаждения, которая снижает температуру детектора ещё на 44 градуса до -267 Цельсия или 6 кельвинов. Всё это необходимо, чтобы видеть не только «дальше» и «глубже», но и «холоднее» или «темнее».
Космос — довольно пыльное место, хотя нашими глазами этого не видно, но одна из причин, почему наше небо не сияет миллиардами звезд — именно межзвездная пыль. У астрономов есть даже термин «зона избегания» — это часть неба где облака межзвездной пыли в плоскости нашей галактики настолько плотные, что не позволяют вести наблюдения отдаленных объектов. Именно межзвездная пыль долгое время не позволяла подтвердить присутствие сверхмассивной черной дыры в центре нашей галактики и именно с помощью инфракрасного наблюдения это удалось подтвердить. Причина такого преимущества инфракрасного света проста — пыль поглощает свет на длине волны, которая короче размера пылинки. Размер межзвездных пылинок от 0,1 мкм до 100 мкм, а количество их растет пропорционально уменьшению их размера. То есть на длине волны видимого диапазона света около 0,5 мкм свет в межзвездном пространстве будет поглощаться намного эффективнее, чем в более длинноволновом инфракрасном диапазоне. Это хорошо видно при наблюдении наиболее запыленных участков космоса.
Космический телескоп имени Джеймса Вебба успешно стартовал 25 декабря 2021 года и сейчас движется к месту своей будущей работы на расстоянии 1,5 млн км от Земли. Все астрономы радуются успешному запуску и предвкушают выдающиеся результаты исследований, которые должны значительно расширить, а может быть и изменить наши знания о Вселенной. Почему же именно он так важен для науки, и каких результатов можно ожидать от этого космического телескопа?
James Webb Space Telescope (JWST) обладает несколькими преимуществами, с которыми не сравнятся другие существующие или планируемые в ближайшее время наземные или космические телескопы. Сам JWST стал настоящим долгостроем и не раз оказывался под угрозой закрытия. Проект стартовал в 1996 году, и к моменту запуска обошелся почти в $10 млрд. Такие сроки и стоимость определяются высочайшей сложностью аппарата, и требованиями к точность конструкции, качеству наблюдений и десятилетним сроком активной работы. Отличительной чертой телескопа выступает его главное раскладное зеркало, составленное из 18 шестиугольных сегментов. У телескопа раскладывается не только зеркало, но и тепловой щит, и вместе с оптическими элементами JWST становится настоящим космическим трансформером.
Новый телескоп чаще всего сравнивают с космическим телескопом Hubble, который уже более тридцати лет служит мировой науке. Диаметр главного зеркала Hubble 2,4 м, а у JWST 6,5 метра. На Земле есть телескопы большего размера, например Большой Канарский имеет диаметр 10,4 м, но из-за атмосферы он может сравниться только с Hubble, да и то не во всём.
Размещение телескопа в космосе дает несколько преимуществ. Прежде всего так избавляются от искажающего влияния земной атмосферы. В то же время сейчас освоено несколько методов повышения качества наблюдений земных телескопов. Некоторые 8-метровые земные телескопы по ряду возможностей уже превышают тот же Hubble, но отсутствие атмосферы — не единственное преимущество космоса. Космические телескопы обладают возможностью длительного накопления света во время наблюдений. В фотографическом деле это называется выдержка, т.е. время открытого затвора, за которое проецируется свет на светочувствительный элемент. А возможности цифровой обработки снимков позволяют суммировать несколько кадров одного и того же места. Вместе это позволяет вести длительное накопление фотонов. Например рекордная съемка Hubble eXtreme Deep Field позволила создать снимок с суммарной выдержкой 2 миллиона секунд или 23 дня.
Такой обзор позволил взглянуть в ранние времена Вселенной до 13,2 млрд лет назад, т.е. самая древняя из заснятых галактик имеет возраст около 600 млн лет от Большого взрыва.
Телескоп Hubble располагается на низкой околоземной орбите, и это не самое удобное место для такого аппарата. Земля и Солнце мешают наблюдениям, и часть времени «съедает» нижний радиационный пояс. Зато такая орбита дала возможность проводить обслуживание телескопа, что значительно продлило время его работы.
Телескоп JWST располагается удобнее для наблюдений, но недоступно для шаттлов обслуживания — в точке Лагранжа L2 в системе Земля-Солнце. Это область космоса из которой и Земля и Солнце всегда находятся примерно в одной области неба. Это значит, что наблюдения выбранных целей не придется прерывать каждые 45 минут, как в случае с Hubble. JWST всегда будет сориентирован «спиной» к Солнцу, а значит всё остальное небо будет доступно для наблюдений. Годовое движение вокруг Солнца позволяет наблюдать любую точку Вселенной.
Такие условия делают эту точку популярной для космических телескопов и там уже находятся телескопы Gaia и «Спектр-РГ», до этого работали Herschel и Plank. Но не стоит опасаться, что телескопы будут там биться бортами друг о друга. На самом деле собственно в точке L2 ни один из этих аппаратов находится не будет, т.к. она неустойчивая, а летают они по широкой гало-орбите вокруг неё. При этом в поперечнике гало-орбита может достигать полутора миллионов километров, т.е. вероятность столкновения у таких телескопов намного меньше чем опасность встречи космического мусора на низкой околоземной орбите.
Диаметр JWST примерно в два с половиной раза больше Hubble, а это один из важных параметров, определяющих разрешающую способность телескопа, т.е. возможность различать наименьшие детали на снимках. Впрочем, разрешение телескопа также зависит от длины волны света, на которой ведется наблюдение, и здесь инфракрасный телескоп проигрывает, тому, который наблюдает в более коротковолновом видимом диапазоне. Длина волны света видимого нашими глазами диапазона в среднем составляет 0,5 мкм, а основные приборы JWST регистрируют от 0,6 до 5 мкм, а это значит, что разрешение снимков JWST будет начинаться с двойного превосходства над Hubble (благодаря большему диаметру главного зеркала), и уходить в пять раз меньшее разрешение (из-за большей длины волны света).
Обеспечение теплового режима в космосе — сложная инженерная задача, которая зависит от условий работы космического аппарата. Например, теплоизоляция телескопа Hubble заботится прежде всего о сохранении стабильной температуры телескопа, независимо от его расположения на солнечной или теневой стороне околоземной орбиты. Однако, температура самого Hubble и его светочувствительных детекторов близка к комнатной. В отличие от него, у JWST рабочая температура на 223 градуса ниже нуля Цельсия. Это позволяет наблюдать гораздо большее число объектов космоса, которые излучают или отражают свет в инфракрасном диапазоне.
Пятислойный теплоизолирующий щит JWST погружает оптические системы телескопа в искусственную тень, в результате чего они охлаждаются до сверхнизких температур путем естественного излучения. В дополнение к ним, один из приборов телескопа имеет активную систему охлаждения, которая снижает температуру детектора ещё на 44 градуса до -267 Цельсия или 6 кельвинов. Всё это необходимо, чтобы видеть не только «дальше» и «глубже», но и «холоднее» или «темнее».
Космос — довольно пыльное место, хотя нашими глазами этого не видно, но одна из причин, почему наше небо не сияет миллиардами звезд — именно межзвездная пыль. У астрономов есть даже термин «зона избегания» — это часть неба где облака межзвездной пыли в плоскости нашей галактики настолько плотные, что не позволяют вести наблюдения отдаленных объектов. Именно межзвездная пыль долгое время не позволяла подтвердить присутствие сверхмассивной черной дыры в центре нашей галактики и именно с помощью инфракрасного наблюдения это удалось подтвердить. Причина такого преимущества инфракрасного света проста — пыль поглощает свет на длине волны, которая короче размера пылинки. Размер межзвездных пылинок от 0,1 мкм до 100 мкм, а количество их растет пропорционально уменьшению их размера. То есть на длине волны видимого диапазона света около 0,5 мкм свет в межзвездном пространстве будет поглощаться намного эффективнее, чем в более длинноволновом инфракрасном диапазоне. Это хорошо видно при наблюдении наиболее запыленных участков космоса.